OSCILLATIONS OF FIRST ORDER IMPULSIVE DELAY DIFFERENTIAL EQUATIONS

by

M.K. Grammatikopoulos $^{(1)}$, M.B.Dimitrova $^{(2)}$ and V.I. Donev $^{(2)}$

First order impulsive delay differential equations are studied, where the fixed moments of impulsive effect (the jump points) are considered as up-jump points. Sufficient integral conditions for all solutions of these type of equations to be oscillatory are established.

Key words: Oscillation, impulsive differential equations, up-jump points, retarded argument.

AMS (MOS) subject classifications: Primary 34A37, 34K11.

1. Introduction

Impulsive delay differential equations can model various processes and phenomena which depend on their prehistory and are subject to short-time disturbances. Such processes occur in the theory of optimal control, theoretical physics, population dynamics, pharmacokinetics, biotechnologies, industrial robotics, economics, etc. Starting from the work of Mil'man and Myshkis [9], in resent years there has been much current interest in studying of impulsive differential equations. Among numerous publications, we choose to refer to [1]-[12].

Consider the first order impulsive delay differential equations of the form

$$x'(t) + q(t)x(t) + p(t)x(t-h) = 0, \ t \neq \tau_k$$
 (E₁)

with the impulsive condition

$$\Delta x(\tau_k) = x(\tau_k + 0) - x(\tau_k - 0) = I_k(x(\tau_k), x(\tau_k - h)), \ k \in N$$

and with the initial condition

$$x(t) = \varphi(t), -h \le t \le 0; \ \varphi \in C([-h, 0]; R).$$

Here the delay h > 0 is a constant and $\tau_k \in (0, +\infty)$, $k \in N$ are fixed moments of impulsive effect (the jump points), which we characterize as down-jumps when $\Delta x(\tau_k) < 0$, $k \in N$ and as up-jumps when $\Delta x(\tau_k) > 0$, $k \in N$).

Denote by PC(R,R) the set of all piecewise continuous on the intervals $(\tau_k, \tau_{k+1}], k \in N$ functions $u: R \to R$ which at the jump points $\tau_k, k \in N$ are continuous from the left, i.e. $u(\tau_k - 0) = \lim_{t \to \tau_k - 0} u(t) = u(\tau_k)$, and may have discontinuities of first kind at the jump points $\tau_k, k \in N$.

We also denote by $i[\tau_0, t)$ the number of fixed jump points $\tau_k \in [\tau_0, t), k \in N$, for $t > \tau_0$. We clarify that

$$i[\tau_0, t) = \begin{cases} 0, & \text{for } \tau \in [\tau_0, \tau_1), \\ 0, & \text{for } \tau \in [\tau_1, \tau_2), \\ \dots \\ k, & \text{for } \tau \in [\tau_k, \tau_{k+1}), k \in N. \end{cases}$$

Our aim is to establish sufficient conditions under which the equation (E_1) is oscillatory. In order to obtain our results, we need the following

Lemma 1 Let τ_k , $k \in N$ be fixed moments of impulsive effect (the jump points) with the property

$$0 < \tau_1 < \tau_2 < \dots < \tau_k < \dots, \lim_{t \to +\infty} \tau_k = +\infty$$

Then for every fixed h > 0 and for every $t \in [h, +\infty)$

$$M = \max_{t \in [h, +\infty]} i[t - h, t) < +\infty,$$

i.e. the number of the fixed moments of impulse effect $\tau_k \in [t-h, t), k \in N$ is finite.

Proof. Since, by the properties of the sequence τ_k , $k \in N$, it follows that $\limsup_{k \to +\infty} \tau_k = +\infty$, we conclude that the only accumulation point of this sequence is that $+\infty$. Accordingly, for any number T > 0 there is an $n_0 \in N$ such that for every $n \ge n_0$ we have $\tau_n > T$. That is, the number of the fixed jump points in every finite interval of the form [T - h, T] is a finite number. The proof of the lemma is complete.

Throughout this paper, unless otherwise mentioned, we will assume that the following hypotheses are satisfied:

$$(H_1) \quad 0 < \tau_1 < \tau_2 < \ldots < \tau_k < \ldots, \lim_{k \to \infty} \tau_k = +\infty \text{ and }$$

$$0 < \min \left\{ \tau_{k+1} - \tau_k \right\} \leq \max \left\{ \tau_{k+1} - \tau_k \right\} < +\infty, k \in N ;$$

 (H_2) The function $p: PC([0,\infty),(0,\infty))$ (resp. the function $q: PC([-h,\infty),R)$ with points of discontinuity $\tau_k, k \in N$, where it is continuous from the left, i.e. $p(\tau_k - 0) = p(\tau_k), k \in N$ (resp. $q(\tau_k - 0) = q(\tau_k), k \in N$);

(H₃) The function $I_k \in C(\mathbb{R}^2; \mathbb{R})$ for all $v \in \mathbb{R}$ and $k \in \mathbb{N}$ has the following sign property $uI_k(u, v) > 0$ for $u \neq 0$.

Moreover, the following notions will be used throughout this paper.

A continuous real valued function u defined on an interval of the form $[a, +\infty)$ eventually has some property if there is a number $b \ge a$ such that u has this property on the interval $[b, +\infty)$.

A real valued function u piecewise continuous on the set $[-h,\infty)\setminus\{\tau_k\}_{k=1}^{\infty}$ and continuous from the left at the jump points $\tau_k, k \in N$ with initial function $\varphi \in C([-h,0];R)$ is said to be a solution to $Eq.(E_1)$ if $u(t) = \varphi(t)$ for every $t \in [-h,0]$ and u(t) satisfies $Eq.(E_1)$ for all sufficiently large $t \geq 0$.

Without other mention, we will assume throughout that every solution u(t) of $Eq.(E_1)$, that is under consideration here, is continuable to the right and is nontrivial. That is, u(t) is defined on some ray of the form $[T_u, +\infty)$ and

$$\sup \{|u(t)|: t \ge T\} > 0 \text{ for each } T \ge T_u.$$

Such a solution is called a regular solution of $Eq.(E_1)$.

As usual, a regular solution of $Eq.(E_1)$ is called nonoscillatory if it is eventually of constant sign, i.e. if it is eventually positive or eventually negative. Otherwise, it is called oscillatory. Furthermore, $Eq.(E_1)$ is called oscillatory if every its regular solution is oscillatory. Otherwise, it is called non-oscillatory.

2. Main results

In order to achieve our goal, we begin our investigation with a special case of $Eq.(E_1)$. Namely, we consider the first order impulsive delay differential equation

$$x'(t) + p(t)x(t-h) = 0, \ t \neq \tau_k$$
 (E₂)

with the impulsive condition

$$\Delta x(\tau_k) = x(\tau_k + 0) - x(\tau_k - 0) = I_k(x(\tau_k), x(\tau_k - h)), \ k \in N$$

and with the initial condition

$$x(t) = \varphi(t), -h \le t \le 0; \varphi \in C([-h, 0]; R),$$

which results from $Eq.(E_1)$ in the case where the function q is identically zero on the interval $[-h, \infty)$.

We start with the following

Lemma 2 Let x(t) be a non-oscillatory solution of $Eq.(E_2)$ and assume that the hypotheses $(H_1) - (H_3)$ are satisfied. Suppose also that:

(C₁) There is a positive constant L such that $|I_k(u,v)| \le L |u|$ for $u \ne 0, v \in R, k \in N$ and

$$(C_2) \liminf_{t \to \infty} \int_{t-h}^{t} p(s)ds \ge \frac{1}{e} (1+L)^{M}, \ M = \max_{t \in [h, +\infty]} i[t-h, t).$$

Then $w(t) = \frac{x(t-h)}{x(t)}$ is an eventually bounded function.

Proof. Since the negative of a solution of $Eq.(E_2)$ is again a solution of $Eq.(E_2)$, it suffices to prove the lemma in the case of an eventually positive solution. So, suppose that x(t) is an eventually positive solution of $Eq.(E_2)$. That is, there is a $t_0 \geq 0$ such that x(t) > 0 for $t \geq t_0$, while x(t-h) > 0 for $t \geq t_0 + h = t_1$. Therefore, from the impulsive condition of $Eq.(E_2)$, in view of the hypotheses (H₂) and (H₃), it follows that x'(t) < 0 and $\Delta x(\tau_k) > 0$ for $t, \tau_k \geq t_1, k \in N$. Thus, x(t) is a decreasing function on every interval $(\tau_k, \tau_{k+1}], \tau_k \geq t_1, k \in N$ and it has discontinuities of the first kind at the points of impulse effect $\tau_k \in R_+$, $k \in N$, considered as up-jumps.

Remark that, from the impulsive condition of $Eq.(E_2)$, using (C_1) , we find

$$\frac{x(\tau_k + 0)}{x(\tau_k)} = 1 + \frac{I_k(x(\tau_k), x(\tau_k - h))}{x(\tau_k)} \le 1 + \frac{Lx(\tau_k)}{x(\tau_k)} = 1 + L, \ k \in \mathbb{N}.$$
 (1)

In order to prove our lemma, consider now the interval of integration $(t, t + \frac{h}{2})$, $t \ge t_1$ of $Eq.(E_2)$ and the number of the discontinuity points $i[t, t + \frac{h}{2})$ in it. Depending on the location of the points t - h and t with respect to the jump points τ_k , $k \in N$, we distinguish the following five possible cases.

Case 1. When t - h, $t \in (\tau_k, \tau_{k+1}]$, $k \in N$ and exactly one of the following holds: either $i[t, t + \frac{h}{2}) = 0$ or else $i[t, t + \frac{h}{2}) = 1$.

Remark that, if $i[t, t + \frac{h}{2}) = 1$, then the only possible point of discontinuity in the interval $(t, t + \frac{h}{2})$ is the point τ_{k+1} .

In this case, integrating $Eq.(E_2)$ from t to $t+\frac{h}{2}$, $t\geq t_1+\frac{h}{2}$, we obtain

$$x(t+\frac{h}{2}) - x(t) - \sum_{t \le \tau_n \le t + \frac{h}{2}} I_n(x(\tau_n), x(\tau_n - h)) + \int_t^{t+\frac{h}{2}} p(s)x(s-h)ds = 0,$$

and hence we find

$$x(t) + \sum_{t \le \tau_n \le t + \frac{h}{2}} I_n(x(\tau_n), x(\tau_n - h)) \ge \int_t^{t + \frac{h}{2}} p(s)x(s - h)ds \ge \int_{t_{M_1}}^{t + \frac{h}{2}} p(s)x(s - h)ds,$$

where $t_{M_1} = \max(t, \max_{t \leq \tau_n \leq t + \frac{h}{2}} \tau_n)$. Observe that, if $i[t, t + \frac{h}{2}) = 0$, then $t_{M_1} = t$, while if $i[t, t + \frac{h}{2}) = 1$, then $t_{M_1} = \tau_{k+1}$. Now, applying the assumption (C_1) to the last inequality, we see that

$$x(t) + L \sum_{t \le \tau_n \le t + \frac{h}{2}} x(\tau_n) \ge x(t - \frac{h}{2}) \int_{t_{M_1}}^{t + \frac{h}{2}} p(s) ds$$

which implies that

$$x(t) + Lx(t)i[t, t + \frac{h}{2}) \ge x(t) + L \sum_{t \le \tau_n \le t + \frac{h}{2}} x(\tau_n) \ge x(t - \frac{h}{2}) \int_{t_{M_1}}^{t + \frac{h}{2}} p(s)ds,$$

and hence we get

$$\frac{x(t - \frac{h}{2})}{x(t)} \le \frac{1 + Li[t, t + \frac{h}{2})}{t + \frac{h}{2}}.$$

$$\int_{t_{M_1}}^{t} p(s)ds$$
(2)

Next, integrating $Eq.(E_2)$ from $t-\frac{h}{2}$ to $t, t-\frac{h}{2} \geq t_1$, we see that

$$x(t) - x(t - \frac{h}{2}) + \int_{t - \frac{h}{2}}^{t} p(s)x(s - h)ds = 0$$

from where we obtain

$$x(t - \frac{h}{2}) \ge x(s - h) \int_{t - \frac{h}{2}}^{t} p(s) ds$$

and so we see that

$$\frac{x(t-h)}{x(t-\frac{h}{2})} \le \frac{1}{\int\limits_{t-\frac{h}{2}}^{t} p(s)ds}$$
(3)

In view of (2) and (3) and using the decreasing character of the function x(t) on every interval $(\tau_k, \tau_{k+1}], \tau_k \geq t_1, \ k \in \mathbb{N}$, we easily conclude that

$$1 < \frac{x(t-h)}{x(t)} \le \frac{1 + Li[t, t + \frac{h}{2})}{\int\limits_{t-\frac{h}{2}}^{t} p(s)ds} \int\limits_{t_{M_1}}^{t+\frac{h}{2}} p(s)ds$$
(4)

This shows that the function w(t), $t \ge t_1$ is bounded and proves our assertion in Case 1.

Case 2. When
$$t - h, t \in (\tau_k, \tau_{k+1}], k \in N$$
 and $i[t, t + \frac{h}{2}) > 1$.

In this case, it is always possible to choose a sequence of points $\xi_l \in (\tau_k, \tau_{k+1}], \ l=1,2,...,r$ with $\xi_1=t-h$ and $\xi_r=t$, where for $h_{\xi_l}=\xi_l-\xi_{l-1}, l=2,...,r$, as in Case 1, exactly one of

the following holds: either $i[\xi_l, \xi_l + \frac{1}{2}h_{\xi_l}) = 0$ or else $i[\xi_l, \xi_l + \frac{1}{2}h_{\xi_l}) = 1$. Then, for each pair ξ_{l-1} , ξ_l , l = 2, ..., r, as in the proof of Case 1, we obtain

$$1 < \frac{x(\xi_{l-1})}{x(\xi_l)} \le \frac{1 + Li[\xi_l, \xi_l + \frac{1}{2}h_{\xi_l})}{\int\limits_{\xi_l - \frac{1}{2}h_{\xi_l}} p(s)ds},$$

$$\int\limits_{\xi_{l-\frac{1}{2}h_{\xi_l}} p(s)ds} \int\limits_{t_{M_{2,l}}} p(s)ds$$
(5)

where $t_{M_{2,l}} = \max(\xi_l, \max_{\xi_l \leq \tau_n \leq \xi_l + \frac{1}{2}h_{\xi_l}\tau_n})$. In view of (5), we easily conclude that

$$1 \le \frac{x(\xi_1)}{x(\xi_2)} \frac{x(\xi_2)}{x(\xi_3)} \dots \frac{x(\xi_{r-1})}{x(\xi_r)} = \frac{x(t-h)}{x(t)} \le \prod_{1 \le l \le r} \frac{1 + Li[\xi_l, \xi_l + \frac{1}{2}h_{\xi_l})}{\int\limits_{\xi_l - \frac{1}{2}h_{\xi_l}}^{\xi_l} p(s) ds} \int\limits_{t_{M_{2,l}}}^{\xi_l + \frac{1}{2}h_{\xi_l}} p(s) ds$$

which proves our assertion in Case 2.

Case 3. When $t \in (\tau_{k+1}, \tau_{k+2}]$, $t - h \in (\tau_k, \tau_{k+1}]$, $k \in \mathbb{N}$ and exactly one of the following holds: either $i[t, t + \frac{h}{2}) = 0$ or else $i[t, t + \frac{h}{2}) = 1$.

Remark that, if $i[t, t + \frac{h}{2}) = 1$, then the only possible point of discontinuity in the interval $(t, t + \frac{h}{2})$ is the point τ_{k+2} .

In this case, because of the up-jump at the point τ_{k+1} ($\Delta x(\tau_{k+1}) > 0$ for $\tau_{k+1} \ge t_1$), depending on the value of h > 0 it is possible to have either (a) $x(t-h) \le x(t)$ or (b) $x(t-h) \ge x(t)$.

If (a) holds, then (1) implies that

$$\frac{1}{1+L} \le \frac{x(\tau_{k+1})}{x(\tau_{k+1}+0)} \le \frac{x(t-h)}{x(t)} \le 1 \tag{6}$$

which proves our claim in this case.

Assume now that (b) holds. In this case integrating $Eq.(E_2)$ from t to $t + \frac{h}{2}$, $t \ge t_1 + \frac{h}{2}$, and then from $t - \frac{h}{2}$ to t, $t - \frac{h}{2} \ge t_1$, as in the proof of Case 1, we derive (2) and

$$\frac{x(t-h)}{x(t-\frac{h}{2})} \le \frac{1 + Li[t-\frac{h}{2},t)}{\int\limits_{t_{M_2}}^{t} p(s)ds}$$
(7)

respectively, where $t_{M_3}=\max(t-\frac{h}{2},\max_{t-\frac{h}{2}\leq\tau_n\leq t}\tau_n)$. Remark that, if $i[t-\frac{h}{2},t)=0$, then $t_{M_3}=t-\frac{h}{2}$, while if $i[t-\frac{h}{2},t)=1$, then $t_{M_3}=\tau_{k+1}$.

By (2) and (7), taking into account the fact that $x(t-h) \ge x(t)$, we conclude that

$$1 \leq \frac{x(t-h)}{x(t)} \leq \frac{(1+Li[t-\frac{h}{2},t))(1+Li[t,t+\frac{h}{2}))}{\int\limits_{t_{M_3}}^t p(s)ds \int\limits_{t_{M_1}}^{t+\frac{h}{2}} p(s)ds},$$

which is similar to (4) and proves our assertion in Case 3.

Case 4. When $t \in (\tau_{k+1}, \tau_{k+2}], t-h \in (\tau_k, \tau_{k+1}], k \in \mathbb{N}$ and $i[t, t + \frac{h}{2}) > 1$.

Here, as in Case 3, it is possible to have either (a) $x(t-h) \leq x(t)$ or (b) $x(t-h) \geq x(t)$. If (a) holds, then we derive (6) which proves our assertion. So, assume that (b) holds. In this case, it is always possible to choose a sequence $\eta_i \in (\tau_k, \tau_{k+1}], \ i=1,2,...,s$ with $\eta_0=t-h$, and such that for $h_{\eta_i}=\eta_i-\eta_{i-1}, \ i=1,2,...,s$, as in Case 1, exactly one of the following to be hold: either $i[\eta_i,\eta_i+\frac{1}{2}h_{\eta_i})=0$ or else $i[\eta_i,\eta_i+\frac{1}{2}h_{\eta_i})=1$. Then, as in the proof of Case 1, for each pair η_{i-1} and $\eta_i, \ i=1,2,...,s$ we obtain

$$1 < \frac{x(\eta_{i-1})}{x(\eta_i)} \le \frac{1 + Li[\eta_i, \eta_i + \frac{1}{2}h_{\eta_i})}{\int\limits_{\eta_i - \frac{1}{2}h_{\eta_i}}^{\eta_i + \frac{1}{2}h_{\eta_i}} p(s)ds}$$

$$\int\limits_{t_{M_{4,i}}}^{\eta_i + \frac{1}{2}h_{\eta_i}} p(s)ds$$
(8)

where $t_{M_{4,i}} = \max(\eta_i, \max_{\eta_i \le \tau_n \le \eta_i + \frac{1}{2}h_{\eta_i}} \tau_n)$.

Since $x(\eta_s) \in (\tau_k, \tau_{k+1}]$, we may choose a point $\xi_1 < t$ such that $\xi_1 \in (\tau_{k+1}, \tau_{k+2}]$, and, as in Case 3, η_s and ξ_1 for $h_1 = \xi_1 - \eta_s$ to satisfy exactly one of the following: either $i[\xi_1, \xi_1 + \frac{1}{2}h_1) = 0$ or else $i[\xi_1, \xi_1 + \frac{1}{2}h_1) = 1$. Then, for the pair η_s and ξ_1 , as in the proof of Case 3, we obtain

$$1 < \frac{x(\eta_s)}{x(\xi_1)} \le \frac{(1 + Li[\xi_1 - \frac{1}{2}h_1, \xi_1))(1 + Li[\xi_1, \xi_1 + \frac{1}{2}h_1))}{\int\limits_{t_{M_{da}}}^{t} p(s)ds} \int\limits_{t_{M_{db}}}^{\xi_1 + \frac{1}{2}h_1} p(s)ds$$

$$(9)$$

where $t_{M_{4a}} = \max(\xi_1 - \frac{h_1}{2}, \max_{\xi_1 - \frac{1}{2}h_1 \le \tau_n \le \xi_1} \tau_n)$, $t_{M_{4b}} = \max(\xi_1, \max_{\xi_1 \le \tau_n \le \xi_1 + \frac{1}{2}h_1} \tau_n)$.

Now, in view of (8) and (9), we conclude that

$$1 \leq \frac{x(\eta_0)}{x(\eta_1)} \frac{x(\eta_1)}{x(\eta_2)} \dots \frac{x(\eta_s)}{x(\xi_1)} = \frac{x(\eta_0)}{x(\xi_1)} = \frac{x(t-h)}{x(\xi_1)} \leq L_{\xi_1}(t) \prod_{1 \leq i \leq s} \frac{1 + Li[\eta_i, \eta_i + \frac{1}{2}h_{\eta_i})}{\int\limits_{\eta_i - \frac{1}{2}h_{\eta_i}}^{\eta_i + \frac{1}{2}h_{\eta_i}} p(s)ds},$$

i.e. the function $\frac{x(t-h)}{x(\xi_1)}$ is bounded.

Finally, since the points ξ_1 and t with $\xi_1 < t$ belong to the same interval $(\tau_{k+1}, \tau_{k+2}]$, applying Cases 1 or Cases 2, we prove that the function $\frac{x(\xi_1)}{x(t)}$ is also bounded.

So, from the above observation, it follows that the function $\frac{x(t-h)}{x(\xi_1)} \frac{x(\xi_1)}{x(t)} = \frac{x(t-h)}{x(t)} = w(t)$ for $t \ge t_1$ is bounded.

Case 5. When $t \in (\tau_{k+1}, \tau_{k+2}]$, while $t - h \in (\tau_{k-m}, \tau_{(k-m)+1}]$, $k \in N$ for some fixed $m \in \{1, 2, ..., M\}$, where $M = \max_{t \in [h, +\infty]} i[t - h, t)$.

In this case for some fixed $m \in \{1, 2, 3, ...M\}$ we see that

$$\tau_{k-m} < t - h < \tau_{(k-m)+1} < \tau_{(k-m)+2} < \dots \\ \tau_k < \tau_{k+1} < t < \tau_{k+2}, \ k \in N$$

Let $\xi_0=t-h$. Let also $\xi_j\in(\tau_{(k-m)+j},\tau_{(k-m)+j+1}],\ j=1,2,...,m+1$ be a sequence of points with $\xi_{m+1}=t$, for which exactly one of the previous cases holds. Then, for each pair $\xi_{j-1},\ \xi_j,\ j=1,2,...,m+1$, as in the proofs of the previous cases considered above, we derive that each of the functions $\frac{x(\xi_{j-1})}{x(\xi_j)}, j=1,2,...,m+1$ is bounded. Therefore, the function $\frac{x(\xi_0)}{x(\xi_1)}\frac{x(\xi_1)}{x(\xi_2)}...\frac{x(\xi_{m-1})}{x(\xi_m)}\frac{x(\xi_m)}{x(\xi_m)}=\frac{x(t-h)}{x(t)}=w(t)$ for $t\geq t_1$ is also bounded.

The proof of the lemma is complete.

Now we state our first theorem which ensure that all solutions of $Eq.(E_2)$ are oscillatory.

Theorem 1 Assume that the hypotheses (H_1) – (H_3) are satisfied. Suppose also that:

(C₁) There is a positive constant L such that $|I_k(u, v)| \le L |u|$ for $u \ne 0, v \in R, k \in N$ and

(C₂)
$$\liminf_{t\to\infty} \int_{t-h}^{t} p(s)ds \ge \frac{1}{e}(1+L)^{M}, M = \max_{t\in[h,+\infty]} i[t-h,t).$$

Then the equation (E_2) is oscillatory.

Proof. As in the proof of Lemma 2, we consider an eventually positive solution x(t) of $Eq.(E_2)$ and a $t_1 \geq t_0 + h > 0$ such that x(t) > 0 and x(t-h) > 0 for $t \geq t_1$. Then, again as in the proof of Lemma 2, from the impulsive condition of $Eq.(E_2)$, using (C_1) , we find

$$\frac{x(\tau_k + 0)}{x(\tau_k)} = 1 + \frac{I_k(x(\tau_k), x(\tau_k - h))}{x(\tau_k)} \le 1 + \frac{Lx(\tau_k)}{x(\tau_k)} = 1 + L, \ k \in \mathbb{N}.$$
 (1)

Next, divide $Eq.(E_2)$ by x(t), $t \ge t_1$ and integrate from t - h to t to derive

$$\ln \frac{x(t-h)}{x(t)} + \sum_{t-h \le \tau_k < t} \ln \frac{x(\tau_k + 0)}{x(\tau_k)} = \int_{t-h}^t p(s) \frac{x(s-h)}{x(s)} ds,$$

where, by Lemma 2, $w(t) = \frac{x(t-h)}{x(t)}$, $t \ge t_1$ is a bounded function. From the above expression, in view of (1), we find

$$\ln w(t)(1+L)^{M} \ge \ln[w(t) \prod_{t-h \le \tau_k < t} (1+L)] > w_l \int_{t-h}^{t} p(s)ds$$
 (10)

where

$$w_l = \liminf_{t \to \infty} w(t), \qquad t \ge t_1.$$

Clearly, (10) implies that

$$\liminf_{t \to \infty} \int_{t-h}^{t} p(s)ds < \frac{1}{e}(1+L)^{M},$$

which contradicts (C_2) . The proof of the theorem is complete.

As an immediate consequence of Theorem 1, we have the following

Corollary 1 Suppose that all assumptions of Theorem 1 are satisfied. Then the corresponding to the equation (E_2) :

(a) inequality

$$x'(t) + p(t)x(t-h) \le 0, \ t \ne \tau_k$$

$$\Delta x(\tau_k) \le I_k(x(\tau_k), x(\tau_k - h)), \ k \in N$$

$$(N_{2, \le})$$

has no eventually positive solutions;

(b) inequality

$$x'(t) + p(t)x(t-h) \ge 0, \ t \ne \tau_k$$

$$\Delta x(\tau_k) \ge I_k(x(\tau_k), x(\tau_k - h)), \ k \in N$$

$$(N_{2,\ge})$$

has no eventually negative solutions.

The proof of Corollary 1 is similar to the proof of Theorem 1 and so it is omitted.

Our next result concerns the oscillatory character of $Eq.(E_1)$. More precisely, we establish the following

Theorem 2 Assume that the hypotheses (H_1) – (H_3) and (C_1) are satisfied. Suppose also that

(C₃)
$$\liminf_{t\to\infty} \int_{t-h}^t p(s) \exp(\int_{s-h}^s q(u)du)ds > \frac{1}{e}(1+L)^{-M}$$
.

Then the equation (E_1) is oscillatory.

Proof. Since the negative of a solution of $Eq.(E_1)$ is again a solution of $Eq.(E_1)$, it suffices to prove the theorem in the case of an eventually positive solution. So, suppose that x(t) is an eventually positive solution of $Eq.(E_1)$. That is, there is a $t_0 \ge 0$ such that x(t) > 0 for $t \ge t_0$, while x(t-h) > 0 for $t \ge t_0 + h = t_1$. Set

$$x(t) = z(t)exp(\int_{0}^{t} q(s)ds), \ t \ge t_{1}.$$

$$(11)$$

Substituting (11) into $Eq.(E_1)$, we obtain

$$z'(t) + p_1(t)z(t-h) = 0, \ t \neq \tau_k; \tag{12}$$

with the impulsive condition

$$\Delta z(\tau_k) = J_k(z(\tau_k), z(\tau_k - h)), \ k \in N$$

where

$$p_1(t) = p(t) \ exp(\int\limits_{t-h}^t q(s)ds), \ t \ \geq t_1$$

and

$$J_k(z(\tau_k),z(\tau_k-h)) = I_k(z(\tau_k)exp(-\int\limits_0^{\tau_k}q(s)ds)\;, \\ z(\tau_k-h)exp[-(\int\limits_0^{\tau_k-h}q(s)ds)exp(\int\limits_0^{\tau_k}q(s)ds)]), \\ k \in N.$$

Since Eq.(12) is of the form of $Eq.(E_2)$ and the functions p_1 and J_k , $k \in N$ satisfy the assumptions of Theorem 1, the conclusion of Theorem 2 is obvious.

Theorem 2 furnish the following

Corollary 2 Suppose that all assumptions of Theorem 2 are satisfied. Then the corresponding to the equation (E_1) :

$$x'(t) + q(t)x(t) + p(t)x(t-h) \le 0, \ t \ne \tau_k$$

$$\Delta x(\tau_k) \le I_k(x(\tau_k), x(\tau_k - h)), \ k \in N$$

$$(N_{1,\le})$$

has no eventually positive solutions;

(b) inequality

$$x'(t) + q(t)x(t) + p(t)x(t-h) \ge 0, \ t \ne \tau_k$$

$$\Delta x(\tau_k) \ge I_k(x(\tau_k), x(\tau_k - h)), \ k \in N$$

$$(N_{1,\ge})$$

has no eventually negative solutions.

The proof of Corollary 2 is similar to that of Theorem 2 and therefore it is omitted.

3. Examples

In order to illustrate the obtained results, we offer the following two examples .

Example 1 Consider the impulsive delay differential equation

$$x'(t) + \frac{5}{4}x(t-1) = 0, \ t \neq \tau_k, \ k \in N,$$

$$\Delta x(\tau_k) = \frac{1}{2}x(\tau_k) + x(\tau_k - 1), \ k \in \mathbb{N},$$

where h = 1 and $\tau_{k+1} - \tau_k = 1$. In this case we have $M = \max_{t \in [h, +\infty]} i[t - h, t) = 1$ and especially for the assumptions (C_1) and (C_2) it is fulfilled

$$\liminf_{t \to \infty} \int_{t-h}^{t} p(s)ds = \frac{5}{4} \ge \frac{1}{e} (1+L)^{M} \approx 1.1.$$

when

$$|\frac{1}{2}x(\tau_k) + x(\tau_k - 1)| \le L|x(\tau_k)|, \ k \in N \ \ for \ L \le 2.$$

So, the assumptions of Theorem 1 are satisfied. Therefore, by Theorem 1, all solutions of the above equation are oscillatory. For example, the function

$$x(t) = e^{-\lambda_* t} A^{i[\tau_0,t)}$$
 with the initial function $\varphi(t) = e^{-\lambda_* t}$, $t \in [\tau_0 - 1, \tau_0]$,

where $\lambda_* = -1.9834$ and A = -0.087 is an oscillatory solution of this equation.

Example 2 Consider the impulsive retarded differential equation

$$x'(t) + \frac{1}{4}x(t-1) = 0, \ t \neq \tau_k, \ k \in N,$$

$$\Delta x(\tau_k) = -\frac{2}{10}x(\tau_k) + \frac{1}{10}x(\tau_k - 1), \ k \in N,$$

with h=1 and $\tau_{k+1}-\tau_k=1$. In this case we have $M=\max_{t\in[h,+\infty]}i[t-h,t)=1$ and it is easy to check that the assumption (C_2) is not satisfied, i.e.

$$\liminf_{t \to \infty} \int_{t-h}^{t} p(s)ds = \frac{1}{4} < \frac{1}{e}(1+L)^{M} \approx 0.405$$

when

$$\left| -\frac{2}{10}x(\tau_k) + \frac{1}{10}x(\tau_k - 1) \right| \le L|x(\tau_k)|, \ k \in \mathbb{N} \ \text{for } L \le 0.1.$$

Hence, the above equation is non-oscillatory. That means that among its solutions at least one is non-oscillatory. In fact, the function

$$x(t) = e^{-\lambda_* t} A^{i[\tau_0,t)}$$
 with the initial function $\varphi(t) = e^{-\lambda_* t}, t \in [\tau_0 - 1, \tau_0], \tau_0 > 0$

where $\lambda_* = 0.385$ and A = 0.954, is a non-oscillatory solution of this equation. Remark that the above equation admits also oscillatory solutions. Such a solution is the function $x(t) = e^{-\lambda_* t} A^{i[\tau_0,t)}$, where $\lambda_* = -2.04$ and A = -0.016.

References

- [1] Bainov D.D., Simeonov P.S., Systems with Impuls Effect: Stability, Theory and Applications. Ellis Horwood, Chichester, 1989.
- [2] Bainov D.D., Simeonov P.S., Theory of Impulsive Differential Equations: Periodic solutions and Applications. Longman, Harlow, 1993.
- [3] DIMITROVA M.B., Oscillation Criteria for Impulsive Differential Equations of First Order with Retarded Argument, Southeast Asian Bull. of Math., 23(1999), 599-605.
- [4] DIMITROVA M.B., Criteria for oscillation of Impulsive Differential Equations of first order with deviating arguments, Kyungpook Math.J.,40(2000), 29-37.
- [5] GOPALSAMY K., ZHANG B.G., On delay differential equations with impulses, J. Math. Anal. Appl., 139 (1989), No. 1, 110–122.
- [6] GYORI I., LADAS G., Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991.
- [7] KRUGER-THIMER E., Formal Theory of drug dosage regiments, I. J. Theo. Biol. 13(1966).
- [8] LAKSMIKANTHAM V., BAINOV D.D., SIMEONOV P.S., Theory of Impulsive Differential Equations. World Scientific Publishing Company, Singapore, 1989.
- [9] MIL'MAN V.D., MYSHKIS A.D., On the Stability of Motio in the Presence of Impuls (Russian), Sibirian Math. J. 1(1960), 233-237.
- [10] Samoilenko A.M., Perestyuk N.A., Differential Equations with Impulse Effect (Russian). Vishcha Shkola, Kiev, 1987.
- [11] YAN J., ZHAO A., Oscillation and stability of linear impulsive delay differential equations, J.Math.Anal.Appl. 227(1998), 187-194.
- [12] ZHANG, A. ZHAO, J. YAN, Oscillation criteria for Impulsive Delay Differential Equations, J.Math.Anal.Appl. 205(1997), 461-470.

(1) Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece

(2) Department of Mathematics, Technical University of Sliven, 8800 Sliven, Bulgaria