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First order impulsive delay differential equations are studied, where
the fixed moments of impulsive effect (the jump points) are considered as
up-jump points. Sufficient integral conditions for all solutions of these type
of equations to be oscillatory are established.
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1. Introduction

Impulsive delay differential equations can model various processes and phenomena which depend
on their prehistory and are subject to short-time disturbances. Such processes occur in the theory
of optimal control, theoretical physics, population dynamics, pharmacokinetics, biotechnologies,
industrial robotics, economics, ete. Starting from the work of Mil’'man and Myshkis [9], in resent
years there has been much current interest in studying of impulsive differential equations. Among

numerous publications, we choose to refer to [1]-[12].

Consider the first order impulsive delay differential equations of the form
o' (t) +q(t)z(t) + p(t)a(t —h) =0, t # 7% (E1)
with the impulsive condition
Az(ry) = z(mx + 0) — z(7% — 0) = Ip(x(mx), x(7 — b)), KEN
and with the initial condition
z(t) = p(t), —h <t <0; ¢ € C([—h,0]; R).

Here the delay i > 0 is a constant and 7, € (0,+00), k € N are fixed moments of impulsive
effect (the jump points), which we characterize as down-jumps when Az(7;) <0, k € N and as

up-jumps when Az(r;) >0, ke N ).
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Denote by PC(R, R) the set of all piecewise continuous on the intervals (Tks Tkt1], k € N
functions u: R — R which at the jump points 7,k € N are continuous from the left, ie. u(m —
0) = limy—s,—ou(t) = u(7), and may have discontinuities of first kind at the jump points
Thy k € N.

We also denote by i[7o,t) the number of fixed jump points 7, € [r,%), k € N, for ¢ > 7.

We clarify that

0, for 7 € [m, M),
’i[Tg,t) _ 0, for T {7’1,1’2),

k, for 7 € [15,7ky1), kK € N.

Our aim is to establish sufficient conditions under which the equation (E1)is oscillatory. In

order to obtain our results, we need the following

Lemma 1 Let 7, k€ N be fixed moments of impulsive effect (the jump points) with the

property

0<Ti<T2<... <1} <..., m Tp = +00

li
t—+oco
Then for every fixed h > 0 and for every t € [h, +00)

M = max i[t— h,t) < +co,
te[h,+o0]

Le. the number of the fixed moments of impulse effect 7, € [t — h, t), k € N is finite.

Proof.  Since, by the properties of the sequence 75, k € N, it follows that lim Sup T =
+00, we conclude that the only accumulation point of this sequence is that +cc. Acccf;l?nogly, for
any number T' > 0 there is an ng € N such that for every n > ng we have 7,, > 7. That is, the
number of the fixed jump points in every finite interval of the form [T — h,T) is a finite number.
The proof of the lemma is complete.

Throughout this paper, unless otherwise mentioned, we will assume that the following hy-

potheses are satisfied:
(H1) 0< << ... <7 < .oy limp_y00 7 = 400 and
0 < min {7p4; — 7%} < max {741 — 7} < 400,k € N ;

(Hz) The function p : PC([0, 00), (0,00)) (resp. the function g : PC([—h, c0), R) with points
of discontinuity 74,k € N, where it is continuous from the left, i.e. p(7, — 0) =p(7%),k € N (resp.
9(me — 0) = g(7k),k € N );
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(H3) The function I, € C(R% R) for allv € R and k € N has the following sign property
ulg(u,v) >0 for u #0.

Moreover, the following notions will be used throughout this paper.

A continuous real valued function u defined on an interval of the form [a, +00) eventually has

some property if there is a number b > @ such that u has this property on the interval [b, +00).

A real valued function u piecewise continuous on the set [—h,00)\{7x}7>; and continuous
from the left at the jump points 74,k € N with initial function ¢ € C([—h,0]; R) is said to
be a solution to Eq.(E1) if u(t) = ¢(t) for every t € [—h,0] and u(t) satisfies Egq.(E;) for all
sufficiently large ¢t > 0.

Without other mention, we will assume throughout that every solution w(t) of Egq.(E;), that
is under consideration here, is continuable to the right and is nontrivial. That is, u(t) is defined

on some ray of the form [T, +oco) and
sup {|u(t)|: t > T} > 0 for each T > T,,.

Such a solution is called a regular solution of Eq.(E}).

As usual, a regular solution of Fq.(F1) is called nonoscillatory if it is eventually of constant
sign , i.e. if it is eventually positive or eventually negative. Otherwise, it is called oscillatory.
Furthermore, Eq.(F)) is called oscillatory if every its regular solution is oscillatory. Otherwise,

it is called non-oscillatory.

2. Main results

In order to achieve our goal, we begin our investigation with a special case of Fq.(F1). Namely,

we consider the first order impulsive delay differential equation
z'(t) + p(t)z(t —h) =0, t # 7 (E2)
with the impulsive condition
Az(me) = z(me + 0) — z(1, — 0) = L{z(7%), z{7x — b)), KEN
and with the initial condition
z(t) = @(t),—h <t < 0; 0 € C([—h,0]; R),

which results from Fg.(E1) in the case where the function ¢ is identically zero on the interval
[—h,c0).

‘We start with the following
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Lemma 2 Let x(t) be a non-oscillatory solution of Eq.(Es) and assume that the hypotheses
(H1) — ( H3 ) are satisfied. Suppose also that:
(C1) There is a positive constant L such that | Iy(u,v)|< L|u| foru#0,veR, ke N
and
t
) 1 'f/ ds>L1+L)M, M= [t — b, t).
(C3) lipn hp(s) s2g(1+1) teﬁ?foo]l[ )
t—

Then W(t):x:(_t)h ! js an eventually bounded function.

Proof. Since the negative of a solution of Egq.(Es) is again a solution of Eq.(E2), it
suffices to prove the lemma in the case of an eventually positive solution. So, suppose that z(t)
is an eventually positive solution of FEgq.(E2). That is, there is a o > 0 such that z(t) > 0
for t > tp, while x(t — h) > 0 for t > tg + h = t;. Therefore, from the impulsive condition of
Eq.(E3), in view of the hypotheses (Hz) and ( Hs), it follows that z/(¢) < 0 and By > 0
for ¢,7, = t1,k € N .Thus, z(t) is a decreasing function on every interval (They Tkt1): Tk = t1,
k € N and it has discontinuities of the first kind at the points of impulse effect 7, € Ry, k € N,

considered as up-jumps.
Remark that, from the impulsive condition of Eq.(E), using (C;), we find

z(rp +0) | Ie(z(7s), (1t — R)) Lz(7y)
x(m) bt z(Ty) z(7y)

£ 14 =1+L, ke N. (1)

In order to prove our lemma, consider now the interval of integration (t,t + %), t > t; of
Eq.(E2) and the number of the discontinuity points i[t,¢ + £) in it. Depending on the location
of the points ¢ — h and t with respect to the jump points 73, k € N, we distinguish the following

five possible cases.

Case 1. Whent—h, t € (T, Te41], £ € N and ezactly one of the following holds: either
ift,t + L) =0 or elsed[t,t + by=1.

Remark that, if ¢[t,t + %) = 1, then the only possible point of discontinuity in the interval
(t,t+ %) is the point 7j41.

In this case, integrating FEgq.(Es3) from t to t + %, t> 1t + %, we obtain

t+4
z(t + g) —z(t) — Z In(z(7s), z(m — h)) + / p(s)z(s — h)ds = 0,
t<Tn St 3 t
and hence we find
t+4 t+4
@+ S L(a(m)a(m - b)) > f Bla)Bls —R)ds > f plalile—H)ds,
tSTnSt"'% i thry
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where ¢y, = max(f,maz,., o, nTn). Observe that, if ift,z + %) = 0, then tpr, = ¢, while if
e S 2

ift,t+ %) = 1, then tps, = Ti41. Now, applying the assumption (C;) to the last inequality, we see

that

t+2
h
) +L Y alm) 2 a-3) / pla)ds
35‘?’,—;334—% tn.jl
which implies that
t+2
! h i
o) + La(®)ilt e+ 3) 2 o) + L Y w(m) 2 alt—3) [ p(s)ds,
tSTnSt"'g‘ - t‘Ml
and hence we get
z(t — &) - 1+ Lift,t + &) @
z(t) T t+k '
J p(s)ds
tar
Next, integrating Fg.(F3) from ¢ — —';‘- to ¢, ¢ — % > t1, we see that
i t
z(t) — z(t — 5) + / p(s)z(s — h)ds =0
=
from where we obtain .
h
z(t — E) >xz(s—h) / p(s) ds
)
and so we see that
t—h 1
R (3)
20 ] p(s)ds

h
=g

In view of (2) and (3) and using the decreasing character of the function z(t) on every interval

(ks Thr1], Tk = t1, k € N, we easily conclude that

a(t—h) __ 1+Lift,t+3)

<=m ST @
J p(S)dstf p(s)ds
t*-% My

This shows that the function w(t), ¢ > ¢; is bounded and proves our assertion in Case 1.
Case 2. Whent — h,t € (Tk, Tit1), K €N and ift,t+2) > 1.
In this case, it is always possible to choose a sequence of points & € (7, Tk+1], [ =1,2,...,7

with £ =t — h and &, = t, where for he, = & — §-1,0 = 2,...,,7 , as in Case 1, exactly one of
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the following holds: either (£}, & + %h&) = 0 or else 1[§, & + %h&) = 1. Then, for each pair &_,,

&, 1=2,...,7, as in the proof of Case 1, we obtain

x(&;_l) < 1+L3‘[£h££+ %h‘&)

1< ; b}
2@ - g et &
| we)ds [ p(s)ds
&i—3he, Ery,

where ¢, , = max(&;,marﬂ& <ra<éi+ihg Tn). In view of (5), we easily conclude that

z(61) z(€2) z(&—1) _ =z(t—h) 1+ Liléy, & + §he;)
P &) e~ em S Al eIt
- | p(s)ds . [ p(s)ds
£1—3he, Ma i

which proves our assertion in Case 2.

Case 3. When t € (Tiq1, Tha2], t — h € (Th, Tkt1], kK € N and ezactly one of the following
holds: either i[t,t + %) =0 or else i[t,t + %) =1,

Remark that, if [t ¢+ %) = 1, then the only possible point of discontinuity in the interval
(t,t+ %) is the point 7js.

In this case, because of the up-jump at the point 7j1.1 (Az(7%41) > 0 for 741 > t1), depending
on the value of h > 0 it is possible to have either (a) z(t — h) < z(t) or (b) a(t — ) > z(t).

If (a) holds, then (1) implies that

1 < I(Tk+1) < CC(t = h)
1+ L7 a(ne1 +0) = =2(2)

=1 (6)

which proves our claim in this case.
Assume now that (b) holds. In this case integrating Eq.(Es) from ¢t to t + Aot>t+ b
and then from ¢ — —';5 tot, t— 52‘— > t1, as in the proof of Case 1, we derive (2) and
z(t—h) _ 1+ Lift— Bt
DT s

ty

()

respectively, where tj;, = max(t — %,maﬂ:t_&q <;Tn) . Remark that, if [t — %,t) = (), then
2=Tn>
tay, =t— 2, while if i[t — &) = 1, then tp, = 7p11.

By (2) and (7), taking into account the fact that z(¢ — h) > z(t) , we conclude that

a(t—h) _ (1+Lift — §,8))(1 + Li[t, ¢ + §))

1<

- o) T ¢ t+3 ’
[ p(s)ds [ p(s)ds
targ tary

which is similar to (4) and proves our assertion in Case 3.
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Case 4. Whent € (Tpy1,Tk42), t—h € (T, Tkt1), K €N and it,t + %) el

Here, as in Case 3, it is possible to have either (a) z(t —h) < xz(t) or (b) z(t — h) = x(t).
If (a) holds, then we derive (6) which proves our assertion. So, assume that (b) holds. In this
case, it is always possible to choose a sequence 7; € (7, Thr1], ¢ = 1,2,...,5 withng =t—h, and
such that for Ay, =n; — 71, i =1,2,..., 5, as in Case I, exactly one of the following to be hold:
either i[n;, 7; + %hm_) = 0 or else ¢[n;, m; + %hm) = 1. Then, as in the proof of Case 1, for each pair

7;—1 and 7;, ¢t =1,2,...,s we obtain

1 z(1i—1) » 1+ Li[ns, 7 + 3h,,)

8
o) o i, ®)
[ p(s)ds [ pls)ds
= by, Iy,

where ¢z, ; = max(7;, MALy, < <ty Tig)s

Since z(ns) € (Tk, Tk+1], we may choose a point £ < ¢ such that & € (Tr~1, Tr+2], and, as in
Case 3, ns and & for h; = & — 1, to satisfy exactly one of the following: either i[{;, &1 + %hl) =
or else i[£1,&1 + %hl) = 1.Then, for the pair 7, and &; , as in the proof of Case 3, we obtain

z(ns) (1+ Li[& — h1,&1))(1 + Lifé, &1 + $R1))

be z(£1) ¢ E1+ih =Lalt) 4
) [ p(s)ds ) I p(s)ds

h _
where tpg,, = max(& — _2L=m‘15’3£1~§h15-rn5§17n) , tm,, = max(&;, mam&gfﬂ,gfﬁéhfn)'

Now, in view of (8) and (9), we conclude that

(o) &(m) z(ns) _ z(no) _ a(t—h) 1+ Lilni,n; + 3h,,)
LS S atm) 2 — =) — =@y S re® 1 — TR
=] plsyds [ p(s)ds
Wi_%hni Iy

i.e. the function -Ii%;_ﬁ)l is bounded.

Finally, since the points £; and ¢ with & < t belong to the same interval (7341, 7)+2], applying
Cases 1 or Cases 2, we prove that the function %(%—) is also bounded.

z(t—h) z(&1) __ =(t—h) __
=) w0 = e = w(t) for

So, from the above observation, it follows that the function

t > t; is bounded.
Case 5. When t € (Tgq1,Tk42), while t — h € (Thepm, T(k—m)+1], k& € N for some fized

m € {1,2,..., M}, where M = max i[t— h,t).
telh,+00]

In this case for some fixed m € {1,2,3,...M} we see that

T Sb— B Tlh—m)+1) < Tlhom)+2) < Tk < Tt < T < Thea, ke N
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Let & =t — h. Let also §; € (T(k_m)+j,7{k_m)+j+1], J=12..,m+1 be a sequence
of points with &p,41 = t, for which exactly one of the previous cases holds. Then, for each
pair &1, &, j = 1,2,..,m + 1, as in the proofs of the previous cases considered above, we

derive that each of the functions 5"%-"5—)1), J=1,2,..,m+1 is bounded. Therefore, the function
zgg% zgg;%rﬁgﬁ) m?é(f:ﬂ) = wg(;)h) = w(t) for ¢ >t is also bounded.

The proof of the lemma is complete.

Now we state our first theorem which ensure that all solutions of Eq.(Es) are oscillatory.

Theorem 1 Assume that the hypotheses (H;) — ( Hs ) are satisfied. Suppose also that:
(Ci1) There is a positive constant L such that | Ii(u,v) |<L|u| foru#0,veR, ke N

and

t
imi >1 M = it —
(Cz) llggfté p(s)ds >=(1+L)M M teI[Il}ixoo] i[t — h, t).

Then the equation (E2) is oscillatory.

Proof. As in the proof of Lemma 2, we consider an éventually positive solution z(t) of
Eq.(E3) and a t1 > ¢+ h > 0 such that z(t) > 0 and (¢t — k) > 0 for ¢ > ¢;. Then, again as in
the proof of Lemma 2, from the impulsive condition of Egq.(E;), using (Cy1), we find

(e +0) _ + Te(a(7e), 2(mk — 1)) 1. 220 _ 4 +L, ke N. (1)
x(Ty) (%) #(7k)

Next, divide Eq.(E2) by z(t), t > ¢; and integrate from ¢t — h to ¢t to derive

lnm(t_h)+ 5 lnw=/p(s)x(s__hlds,

@ G 2T

where, by Lemma 2, w(t) = rg—(_t)hl, t > t1 is a bounded function. From the above expression, in

view of (1), we find

t
w1+ L)Y 2w ] @+L)>w [ pe)ds (10)
t—h<T, <t t—h
where
w = litm inf w(t), t > t.

Clearly, (10) implies that

t

_ L M

lltrgégf/p(s)ds<g(l+L) g
t—h
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which contradicts (Cz). The proof of the theorem is complete.

As an immediate consequence of Theorem 1, we have the following

Corollary 1 Suppose that all assumptions of Theorem 1 are satisfied. Then the corresponding

to the equation (Es):

(a) inequality
2'(t) +p(t)e(t—h) <0, t# 7 (N2,<)

Az(m) € I(z(1p),z(x — h)), ke N
has no eventually positive solutions;

(b) inequality
a'(t) +pt)z(t —h) 20, t # 7 (Na,2)

Az(tg) =2 I(z(m), z(mx — ), k€N

has no eventually negative solutions.

The proof of Corollary 1 is similar to the proof of Theorem 1 and so it is omitted.
Our next result concerns the oscillatory character of FEgq.(E7). More precisely, we establish

the following

Theorem 2 Assume that the hypotheses (H;) — ( Hz ) and (C;) are satisfied. Suppose also that

(C3) 11m1nf f p(s) exp(/ u)du)ds > (1+L) M

Then the equatron (E1) is oscillatory.

Proof. Since the negative of a solution of Eq.(E}) is again a solution of Eg.(E7), it suffices
to prove the theorem in the case of an eventually positive solution. So, suppose that z(¢) is an
eventually positive solution of Eq.(E;). That is, there is a to > 0 such that xz(¢) > 0 for ¢ > {g,
while z(t — h) > 0fort > ¢+ h = t;. Set

e z(t)e:cp(/ g(s)ds), t > t1. (11)
0
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Substituting (11) into Eg.(E;), we obtain
#() +p1(t)z(t —h) =0, t # 7 (12)

with the impulsive condition

Az(1g) = Jk(2(13), 2(Ts — k), k€N

where
pi(t) = p(t) eap( [ g(s)ds), t 21
t—h
and
Tk Te—h Tis
Ji(z(1), 2(T—h)) = Ik(z(Tk)ezp(—/q(s)ds) , 2(Tr—h)exp[—( j q(s)ds)emp(f q(s)ds)]),k € N.
0 0 0

Since Eq.(12) is of the form of FEg.(E3) and the functions p; and J;, k € N satisfy the

assumptions of Theorem 1, the conclusion of Theorem 2 is obvious.

Theorem 2 furnish the following

Corollary 2 Suppose that all assumptions of Theorem 2 are satisfied. Then the corresponding

to the equation (Ej):

(a) inequality
2'(t) + q()z(t) + p(t)z(t — h) <O, t# 7, (N1,5)
Ax(t) < Ip(z(re), (. — h)), kEN

has no eventually positive solutions;

(b) inequality
z'(t) + q(t)z(t) +p(E)z(t — h) >0, t # 74 (N1>)

Az(my) > I(z(7k), z(t — h)), k€N

has no eventually negative solutions.

The proof of Corollary 2 is similar to that of Theorem 2 and therefore it is omitted.

3. Examples

In order to illustrate the obtained results, we offer the following two examples .
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Example 1 Consider the impulsive delay differential equation

5
:c’(t)Jer(t—l):D, t#‘Tk;, ke N,

1
Az(rg) = EI(TR:) + (1 — 1), k€ N,
where h =1 and Tp41 — 7 = 1. In this case we have M = max i[t — h,t) = 1 and especially

te[h,+0c0]
for the assumptions (Cp) and (Cz) it is fulfilled

(AEB)H 14,

[

¢

o 5

htrgggf / p(s)ds = 1 >
t—h

when

|%DJ(T}C) +z(r, —1)| < Llz(7)|, ke N for L <2.

So, the assumptions of Theorem 1 are satisfied. Therefore, by Theorem 1, all solutions of the

above eguation are oscillatory. For example, the function
__ —Aut gi[o,t) . s g : =Xt _
z(t) =e ™A with the initial function @(t) =e ,t € [0 —1,70),

where A\, = —1.9834 and A = —0.087 is an oscillatory solution of this equation.

Example 2 Consider the impulsive retarded differential equation

rc’(t)+%a:(t—1):0, t# T, KEN,

2 1
Az(m) = —i-(jm(ﬂc) 4 Tda:(ng —1), ke N,

with h =1 and Tpy1 — T = 1. In this case we have M = 1Enax 1i[t —h,t) =1 and it is easy
teh,+oo
to check that the assumption (Cs) is not satisfied, i.e.

¢
lminf [ p(s)ds = . < é(l +L)M ~ 0.405

t—o0 4
t—h
when

1
| - 12—0513('1%) + Ew(m — 1| <Llz(n)|, ke N for L <0.1.

Hence, the above equation is non-oscillatory. That means that among its solutions af least one is

non-oscillatory. In fact, the function
z{t) = et AL wyith the initial function o(t) = g e [0 — 1,70],70 >0

where A, = 0.385 and A = 0.954, is a non-oscillatory solution of this equation. Remark that
the above equation admits also oscillatory solutions. Such a solution is the function z(t) =
e MtAT0) where A, = —2.04 and A = —0.016.
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